Author: Cargnelutti, M.
Paper Title Page
TUPB12 Machine Studies with Libera Instruments at the SLAC Spear3 Accelerators 284
 
  • S. Condamoor, W.J. Corbett, D.J. Martin, S. C. Wallters
    SLAC, Menlo Park, California, USA
  • M. Cargnelutti, P. Leban
    I-Tech, Solkan, Slovenia
  • L.W. Lai
    SSRF, Shanghai, People's Republic of China
  • Q. Lin
    Donghua University, Shanghai, People's Republic of China
 
  Turn-by-turn BPM readout electronics were tested on the SPEAR3 booster synchrotron and storage ring to identify possible improvements for the booster injection process and to characterize processor performance in the storage ring. For this purpose, Libera Spark and Libera Brilliance+ instruments were customized for the booster (358.4 MHz) and storage ring (476.3 MHz) radio-frequencies, respectively, and tested during machine studies. Even at low single-bunch booster beam current, the dynamic range of the Libera Spark readout electronics provided excellent transverse position measurement capability during the linac-to-booster injection process, the energy ramp-up phase and during beam extraction. Booster injection efficiency was also analyzed as a function of linac S-band bunch train arrival time. In the SPEAR3 storage ring turn-by-turn Libera Brilliance+ measurement capability was evaluated for single and multi-bunch fill patterns as a function of beam current. The single-turn measurement resolution was found to be better than 10 microns for a single 3 mA bunch. The horizontal single-bunch damping time was then determined with the 238 MHz bunch-by-bunch feedback system on and off.  
poster icon Poster TUPB12 [1.531 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-TUPB12  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPB13 Stability Tests with Pilot-Tone Based Elettra BPM RF Front End and Libera Electronics 289
 
  • M. Cargnelutti, P. Leban, M. Žnidarčič
    I-Tech, Solkan, Slovenia
  • S. Bassanese, G. Brajnik, S. Cleva, R. De Monte
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  Long-term stability is one of the most important properties of the BPM readout system. Recent developments on pilot tone capable front end have been tested with an established BPM readout electronics. The goal was to demonstrate the effectiveness of the pilot tone compensation to varying external conditions. Simulated cable attenuation change and temperature variation of the readout electronics were confirmed to have no major effect to position data readout. The output signals from Elettra front end (carrier frequency and pilot tone frequency) were processed by a Libera Spark with the integrated standard front end which contains several filtering, attenuation and amplification stages. Tests were repeated with a modified instrument (optimized for pilot tone) to compare the long-term stability results. Findings show the pilot tone front end enables great features like self-diagnostics and cable-fault compensation as well as small improvement in the long-term stability. Measurement resolution is in range of 10 nanometers RMS in 5 Hz bandwidth.  
poster icon Poster TUPB13 [1.223 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-TUPB13  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)