Author: Gao, B.
Paper Title Page
WEPC15 Machine Learning Applied to Predict Transverse Oscillation at SSRF 512
 
  • B. Gao, J. Chen, Y.B. Leng, Y.M. Zhou
    SINAP, Shanghai, People's Republic of China
 
  A fast beam size diagnostic system has been developed at SSRF (Shanghai Synchrotron Radiation Facility) storage ring for turn-by-turn and bunch-by-bunch beam transverse oscillation study. This system is based on visible synchrotron radiation direct imaging system. Currently, this system already has good experimental results. However, this system still has some limitations, the resolution is subject to the point spread function and the speed of online data processing is limited by the complex algorithm. We present a technique that applied machine learning tools to predict transverse oscillation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-WEPC15  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOB01 Injection Transient Study Using 6-Dimensional Bunch-by-bunch Diagnostic System at SSRF* 542
 
  • Y.M. Zhou, Y.B. Leng, N. Zhang
    SSRF, Shanghai, People's Republic of China
  • B. Gao
    SINAP, Shanghai, People's Republic of China
 
  Beam instability often occurs in the accelerator and even causes beam loss. The beam injection transient process provides an important window for the study of beam instability. Measurement of the bunch-by-bunch dynamic parameters of the storage ring is useful for accelerator optimization. A 6-dimensional bunch-by-bunch diagnostic system has been successfully implemented at SSRF. The measurements of transverse position and size and longitudinal phase and length are all completed by the system. Button BPM is used to measure beam position, phase, and length, and the synchrotron radiation light is used to beam size measurement. Signals are sampled simultaneously by a multi-channel acquisition system with the same clock and trigger. Different data processing methods are used to extract the 6-dimensional information, where the delta-over-sum algorithm for beam position extraction, the Gaussian fitting algorithm for beam size extraction, zero-crossing detection algorithm for beam phase extraction and the two-frequency method for bunch length extraction. The system set up and performance will be discussed in more detail in this paper.  
slides icon Slides THOB01 [7.413 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-THOB01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)