Author: Gavrilov, S.A.
Paper Title Page
MOPA07 Beam Diagnostics and Instrumentation for Proton Irradiation Facility at INR RAS Linac 40
 
  • S.A. Gavrilov, A.A. Melnikov, A.I. Titov
    RAS/INR, Moscow, Russia
 
  The new proton irradiation facility to study radiation effects in electronics and other materials has been built in INR RAS linac. The range of the specified intensity from 107 to 1012 protons per beam pulse is covered with three beam diagnostic instruments: current transformer, phosphor screen and multianode gas counter. The peculiarities of the joint use of the three instruments are described. The experimental results of beam parameters observations and adjustments are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-MOPA07  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA17 Development, Fabrication and Laboratory Tests of Bunch Shape Monitors for ESS Linac 407
 
  • S.A. Gavrilov, D.A. Chermoshentsev, A. Feschenko
    RAS/INR, Moscow, Russia
 
  Two Bunch Shape Monitors have been developed and fabricated in INR RAS for European Spallation Source linac. To fulfil the requirements of a 4 ps phase resolution the symmetric λ-type RF-deflector based on the parallel wire line with capacitive plates has been selected. Additional steering magnet to correct incline of the focused electron beam is also used. Limitations due to space charge of the analysed beam and due to external magnetic fields are discussed. The results of the laboratory tests of the monitors are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-WEPA17  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA19 Results from the CERN LINAC4 Longitudinal Bunch Shape Monitor 415
 
  • J. Tan, G. Bellodi
    CERN, Geneva, Switzerland
  • A. Feschenko, S.A. Gavrilov
    RAS/INR, Moscow, Russia
 
  The CERN Linac4 has been successfully commissioned to its nominal energy and will provide 160 MeV H ions for charge-exchange injection into the Proton Synchrotron Booster (PSB) from 2020. A complete set of beam diagnostic devices has been installed along the accelerating structures and the transfer line for safe and efficient operation. This includes two longitudinal Bunch Shape Monitors (BSM) developed by the Institute for Nuclear Research (INR, Moscow). Setting-up the RF cavities of Linac4 involves beam loading observations, time-of-flight measurements and reconstruction of the longitudinal emittance from phase profile measurements. In this paper the BSM is presented along with some results obtained during accelerator commissioning, including a comparison with phase measurements performed using the Beam Position Monitor system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-WEPA19  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)