Author: Karataev, P.
Paper Title Page
MOPB16 Continuous Beam Energy Measurements at Diamond Light Source 107
 
  • N. Vitoratou, P. Karataev
    Royal Holloway, University of London, Surrey, United Kingdom
  • P. Karataev
    JAI, Egham, Surrey, United Kingdom
  • G. Rehm
    DLS, Oxfordshire, United Kingdom
 
  Resonant Spin Depolarization (RSD) is a well-known technique that has been employed by Diamond Light Source (DLS) for beam energy measurements. In this project, we study a new approach to make RSD compatible with user beam operation and provide a continuously updated online measurement. An array of four custom-made scintillation detectors has been installed around the beam pipe, downstream of collimators to capture the highest fraction of lost particles and maximize the count rate. The excitation is gated to half of the stored bunches and the acquisition system counts losses in both halves independently. Using the count in the un-excited part for normalisation suppresses external factors that modify the loss rate. Different parameters of the measurement, like excitation kick strength and duration have been explored to optimise depolarisation and to increase the reliability of the measurement.  
poster icon Poster MOPB16 [3.136 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-MOPB16  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPB14 Recent Results on Non-invasive Beam Size Measurement Methods Based on Polarization Currents 464
 
  • S. Mazzoni, M. Bergamaschi, O.R. Jones, R. Kieffer, T. Lefèvre, F. Roncarolo
    CERN, Geneva, Switzerland
  • A. Aryshev, N. Terunuma
    KEK, Ibaraki, Japan
  • L.Y. Bartnik, M.G. Billing, J.V. Conway, M.J. Forster, Y.L.P. Fuentes, J.P. Shanks, S. Wang
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • V.V. Bleko, A.S. Konkov, A. Potylitsyn
    TPU, Tomsk, Russia
  • L. Bobb
    DLS, Oxfordshire, United Kingdom
  • P. Karataev, K. Lekomtsev
    JAI, Egham, Surrey, United Kingdom
  • P. Karataev
    Royal Holloway, University of London, Surrey, United Kingdom
 
  We present recent results on non-invasive beam profile measurement techniques based on Diffraction Radiation (DR) and Cherenkov Diffraction Radiation (ChDR). Both methods exploit the analysis of broadband electromagnetic radiation resulting from polarization currents produced in, or at the boundary of, a medium in close proximity of a charged particle beam. To increase the resolution of DR, measurements were performed in the UV range at a wavelength of 250 nm. With such configurations, sensitivity to the beam size of a 1.2 GeV electron beam below 10 um was observed at the Accelerator Test Facility (ATF) at KEK, Japan. In the case of the ChDR, a proof of principle study was carried out at the Cornell Electron Storage Ring (CESR) where beam profiles were measured in 2017 on a 5.3 GeV positron beam. At the time of writing an experiment to measure the resolution limit of ChDR has been launched at ATF where smaller beam sizes are available. We will present experimental results and discuss the application of such techniques for future accelerators.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-WEPB14  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)