Author: Koshio, Y.
Paper Title Page
MOOB04 Upgrade of the Machine Protection System Toward 1.3 MW Operation of the J-PARC Neutrino Beamline 18
  • K. Sakashita, M.L. Friend, K. Nakayoshi
    KEK, Tsukuba, Japan
  • Y. Koshio, S. Yamasu
    Okayama University, Faculty of Science, Okayama City, Japan
  The machine protection system (MPS) is one of the essential components to realize safe operation of the J-PARC neutrino beamline, where a high intensity neutrino beam for the T2K long baseline neutrino oscillation experiment is generated by striking 30GeV protons on a graphite target. The proton beam is extracted from the J-PARC main ring proton synchrotron (MR) into the primary beamline. The beamline is currently operated with 485kW MR beam power. The MR beam power is planned to be upgraded to 1.3+ MW. The neutrino production target could be damaged if the high intensity beam hits off-centered on the target, due to non-uniform thermal stress. Therefore, in order to protect the target, it is important to immediately stop the beam when the beam orbit is shifted. A new FPGA-based interlock module, with which the beam profile is calculated in real time, was recently developed and commissioned. This module reads out signals from a titanium-strip-based secondary emission profile monitor (SSEM) which is placed in the primary beamline. An overview of the upgrade plan of the MPS system and the results of an initial evaluation test of the new interlock module will be discussed.  
slides icon Slides MOOB04 [8.367 MB]  
DOI • reference for this paper ※  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)