Author: Li, P.
Paper Title Page
TUPC11 Design of an Ultrafast Stripline Kicker for Bunch-by-Bunch Feedback 322
 
  • J. Wang, P. Li, D. Wu, D.X. Xiao, L.G. Yan
    CAEP/IAE, Mianyang, Sichuan, People's Republic of China
 
  Funding: Work supported by China National Key Scientific Instrument and Equipment Development Project (2011YQ130018), National Natural Science Foundation of China (11475159, 11505173, 11575264 and 11605190)
The CAEP THz Free Electron Laser (CTFEL) will have a fast transverse bunch-by-bunch feedback system on its test beamline, which is used to correct the beam position differences of individual bunches with interval of about 2 ns. In this paper, we are proposing an ultrafast wideband stripline kicker, which is able to provide a kick to the bunch in a 2 ns time window. The structure design and simulation results of this kicker are also discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-TUPC11  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA12 Differential Evolution Genetic Algorithm for Beam Bunch Temporal Reconstruction 392
 
  • D. Wu, T.H. He, C.L. Lao, P. Li, J. Liu, X. Luo, Q. Pan, L.J. Shan, X. Shen, J. Wang, D.X. Xiao, L.G. Yan, P. Zhang, K. Zhou
    CAEP/IAE, Mianyang, Sichuan, People's Republic of China
  • Y. Liu
    CAEP/IFP, Mainyang, Sichuan, People's Republic of China
 
  Funding: Work supported by China National Natural Science Foundation of China with grant (11475159, 11505173, 11505174, 11575264, 11605190 and 11105019)
Coherent radiation, such as coherent transition radiation, coherent diffraction radiation, coherent synchrotron radiation, etc, can be used to measure the longitudinal distribution of the electron beam bunch of any length, as long as the coherent radiation spectrum can be measured. In many cases, the Kramers-Krönig relationship is used to reconstruct the temporal distribution of the beam from the coherent radiation spectrum. However, the extrapolation of the low frequency will introduce the uncertainty of the reconstruction. In this paper, an algorithm of differential evolution (DE) for temporal reconstruction is discussed. The DE reconstruction works well for the complex and ultrashort distribution. It will be an effectIve tool to accurately measure the femtosecond bunch temporal structure.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-WEPA12  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)