Author: Scheidt, K.B.
Paper Title Page
TUPB02 Complete Test Results of New BPM Electronics for the ESRF New LE-Ring 257
 
  • K.B. Scheidt
    ESRF, Grenoble, France
 
  Among the 320 BPMs in the ESRF new low emittance ring, a set of 128 units will be equipped with new electronics, while the other set (192) will be served by the existing Libera-Brilliance electronics. These new electronics are an upgraded version of the low-cost Spark electronics originally developed 3 years ago for the ESRF Injector complex. All these 128 units have been installed in the first half of 2018 on existing BPM signals (through duplication with RF-splitters) and subsequently been tested thoroughly for performance characteristics like stability, resolution and reliability. It will be shown that while these Sparks have a very straightforward and simple concept, i.e. completely omitting calibration schemes like RF-cross-bar switching, pilot-tone introduction or active temperature control, that they are fully compatible with all the beam position measurement requirements of this new ring.  
poster icon Poster TUPB02 [1.577 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-TUPB02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOB01 New Beam Loss Detector System for EBS-ESRF 346
 
  • L. Torino, K.B. Scheidt
    ESRF, Grenoble, France
 
  In view of the construction and the commissioning of the new Extremely Brilliant Source (EBS) ring, a new Beam Loss Detector (BLDs) system has been developed, installed and tested in the present European Synchrotron Radiation Facility (ESRF) storage ring. The new BLD system is composed of 128 compact PMT-scintillator based BLDs, distributed evenly and symmetrically at 4 BLDs per cell, controlled and read out by 32 Libera Beam Loss Monitors (BLMs). The detectors fast response and the versatility of the read-out electronics allow to measure fast losses with an almost bunch-by-bunch resolution, as well as integrated losses useful during the machine operation. In this paper the different acquisition modes will be explained and results obtained during injection and normal operation will be presented.  
slides icon Slides WEOB01 [8.727 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-WEOB01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)