Author: Welsch, C.P.
Paper Title Page
MOPC06 Comparative Measurement and Characterisation of Three Cryogenic Current Comparators Based on Low-Temperature Superconductors 126
 
  • V. Tympel, T. Stöhlker
    HIJ, Jena, Germany
  • H. De Gersem, N. Marsic, W.F.O. Müller
    TEMF, TU Darmstadt, Darmstadt, Germany
  • M.F. Fernandes, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • M.F. Fernandes, J. Tan
    CERN, Geneva, Switzerland
  • M.F. Fernandes, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • J. Golm, R. Neubert, F. Schmidl, P. Seidel
    FSU Jena, Jena, Germany
  • D.M. Haider, F. Kurian, M. Schwickert, T. Sieber, T. Stöhlker
    GSI, Darmstadt, Germany
  • R. Neubert
    Thuringia Observatory Tautenburg, Tautenburg, Germany
  • M. Schmelz, R. Stolz
    IPHT, Jena, Germany
  • T. Stöhlker
    IOQ, Jena, Germany
  • V. Zakosarenko
    Supracon AG, Jena, Germany
 
  Funding: Supported by the BMBF, project numbers 05P15SJRBA and 05P18SJRB1.
A Cryogenic Current Comparator (CCC) is a non-destructive, metrological-traceable charged particle beam intensity measurement system for the nano-ampere range. Using superconducting shielding and coils, low temperature Superconducting Quantum Interference Devices (SQUIDs) and highly permeable flux-concentrators, the CCC can operate in the frequency range from DC to several kHz or hundreds of kHz depending on the requirement of the application. Also, the white noise level can be optimized down to 2 pA/sqrt(Hz) at 2.16 K. This work compares three different Pb- and Nb-based CCC-sensors developed at the Institute of Solid State Physics and Leibniz Institute of Photonic Technology at Jena, Germany: CERN-Nb-CCC, optimized for applica-tion at CERN Antiproton Decelerator (AD) in 2015 with a free inner diameter of 185 mm; GSI-Pb-CCC, designed for GSI-Darmstadt with a free inner diameter of 145 mm, 1996 completed, 2014 upgraded; GSI-Nb-CCC-XD, de-signed for the GSI/FAIR-project with a free inner diame-ter of 250 mm, 2017 completed. The results of noise, small-signal, slew-rate, and drift measurements done 2015 and 2018 in the Cryo-Detector Lab at the University of Jena are presented here.
 
poster icon Poster MOPC06 [2.150 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-MOPC06  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPB16 Development of a Beam-Gas Curtain Profile Monitor for the High Luminosity Upgrade of the LHC 472
 
  • R. Veness, M. Ady, N. Chritin, J. Glutting, O.R. Jones, R. Kersevan, T. Marriott-Dodington, S. Mazzoni, A. Rossi, G. Schneider
    CERN, Geneva, Switzerland
  • P. Forck, S. Udrea
    GSI, Darmstadt, Germany
  • A. Salehilashkajani
    The University of Liverpool, Liverpool, United Kingdom
  • P. Smakulski
    WRUT, Wroclaw, Poland
  • C.P. Welsch, H.D. Zhang
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  High luminosity upgrades to the LHC at CERN and future energy frontier machines will require a new generation of minimally invasive profile measurement instruments. Production of a dense, focussed gas target allows beam-gas fluorescence to be exploited as an observable, giving an instrument suitable for installation even in regions of high magnetic field. This paper describes the development of a device based on these principles that would be suitable for operation in the LHC. It focusses on mechanisms for the production of a homogeneous gas curtain, the selection of an appropriate working gas and the optical fluorescence detection system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-WEPB16  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)