Author: Zhou, W.M.
Paper Title Page
MOPC11 Data Acquisition System for Beam Instrumentation of SXFEL and DCLS 137
 
  • Y.B. Yan
    SINAP, Shanghai, People's Republic of China
  • J. Chen, L.W. Lai, Y.B. Leng, C.L. Yu, L.Y. Yu, H. Zhao, W.M. Zhou
    SSRF, Shanghai, People's Republic of China
 
  The high-gain free electron lasers have given scientists hopes for new scientific discoveries in many frontier research areas. The Shanghai X-Ray Free-Electron Laser (SXFEL) test facility is commissioning at the SSRF campus. The Dalian Coherent Light Source (DCLS) has successfully commissioned in the northeast of China, which is the brightest vacuum ultraviolet free electron laser facility. The data acquisition system for beam instrumentation is based on EPICS platform. The field programmable gate array (FPGA) and embedded controller are adopted for the signal processing and device control. The high-level applications are developed using Python. The details of the data acquisition system will be reported in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-MOPC11  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPC16 The Development and Applications of Digital BPM Signal Processor on SSRF 147
 
  • L.W. Lai, F.Z. Chen, Y.B. Leng, Y.B. Yan, N. Zhang, W.M. Zhou
    SSRF, Shanghai, People's Republic of China
 
  The development of Digital BPM Signal Processors (DBPM) for SSRF started from 2008. The first prototype for SSRF storage ring was completed in 2012, with turn-by-turn resolution better than 1μm. From 2016 to 2017, SSRF successively constructed two FEL facilities in China, DCLS and SXFEL test facilities. The second ver-sion DBPM was developed and used in large scale during this period to meet the requirements of signal processing for stripline BPMs and cavity BPMs. After that, we turned to the development of DBPM for SSRF storage ring based on the second version hardware, including FPGA firmware, EPICS IOC, EDM control panel. The development was completed and tests were carried out in early 2018. Test results showed that the position data is accurate and can monitor beam movement correctly, and online turn-by-turn position data resolution reaches 0.46μm. This paper will introduce the design of DBPM for the SSRF storage ring and the tests carried out to verify the data accuracy and evaluate the system performance.  
poster icon Poster MOPC16 [1.372 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-MOPC16  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)