Keyword: diagnostics
Paper Title Other Keywords Page
MOOB03 Upgrade and Status of Standard Diagnostic-Systems at FLASH and FLASHForward FEL, electron, electronics, cavity 13
 
  • N. Baboi, H.T. Duhme, O. Hensler, G. Kube, T. Lensch, D. Lipka, B. Lorbeer, Re. Neumann, P.A. Smirnov, T. Wamsat, M. Werner
    DESY, Hamburg, Germany
 
  Electron beam diagnostics plays a crucial role in the precise and reliable generation of ultra-short high bril-liance XUV and soft X-ray beams at the Free Electron Laser in Hamburg (FLASH). Most diagnostic systems monitor each of up to typically 600 bunches per beam, with a frequency of up to 1 MHz, a typical charge be-tween 0.1 and 1 nC and an energy of 350 to 1250 MeV. The diagnostic monitors have recently undergone a major upgrade. This process started several years ago with the development of monitors fulfilling the requirements of the European XFEL and of the FLASH2 undulator beamline and it continued with their installation and commissioning. Later they have been further improved and an upgrade was made in the old part of the linac. Also the FLASHForward plasma-wakefield acceleration experiment has been installed in the third beamline. This paper will give an overview of the upgrade of the BPM, Toroid and BLM systems, pointing out to their improved performance. Other systems underwent a partial upgrade, mainly by having their VME-based ADCs replaced with MTCA type. The overall status of the diagnostic will be reviewed.  
slides icon Slides MOOB03 [2.728 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-MOOB03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPA07 Beam Diagnostics and Instrumentation for Proton Irradiation Facility at INR RAS Linac electron, radiation, linac, proton 40
 
  • S.A. Gavrilov, A.A. Melnikov, A.I. Titov
    RAS/INR, Moscow, Russia
 
  The new proton irradiation facility to study radiation effects in electronics and other materials has been built in INR RAS linac. The range of the specified intensity from 107 to 1012 protons per beam pulse is covered with three beam diagnostic instruments: current transformer, phosphor screen and multianode gas counter. The peculiarities of the joint use of the three instruments are described. The experimental results of beam parameters observations and adjustments are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-MOPA07  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPB02 ARIES-ADA: An R&D Network for Advanced Diagnostics at Accelerators electron, synchrotron, emittance, laser 71
 
  • P. Forck, M. Sapinski
    GSI, Darmstadt, Germany
  • C. Gerth, K. Wittenburg
    DESY, Hamburg, Germany
  • U. Iriso, F. Pérez
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • R. Ischebeck
    PSI, Villigen PSI, Switzerland
  • O.R. Jones
    CERN, Geneva, Switzerland
 
  Funding: This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No 730871.
Accelerator Research and Innovation for European Science and Society, ARIES, is an initiative funded by the European Union (https://aries.web.cern.ch/). The activity comprises three major categories: Joint Research Activities; Transnational Access; Network Activities. One of these networks is related to Advanced Diagnostics at Accelerators (ADA) with the task of strengthening collaborations between international laboratories for coordinated research and development in beam diagnostics (https://aries.web.cern.ch/content/wp8). This task is performed by organizing topical workshops on actual developments and supporting interchange of experts between different labs. Since the start of the project in May 2017 four topical workshops of two to three days duration have been organized, each with 30-40 participants ranging from novices to worldwide experts in their particular field. In this contribution these initial workshops are summarized and an outlook given for further workshops within this ARIES-ADA network.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-MOPB02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOA01 The Diagnostic System at the European XFEL; Commissioning and First User Operation FEL, MMI, operation, electron 162
 
  • D. Nölle
    DESY, Hamburg, Germany
 
  The European XFEL is now commissioned and user operation has started. Long bunch trains up to 300 bunches are established. The role of and experience with the beam diagnostic will be reported. Highlights, problems and their solutions will be discussed.  
slides icon Slides TUOA01 [8.932 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-TUOA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOA02 Application of Machine Learning to Beam Diagnostics network, optics, controls, simulation 169
 
  • E. Fol, J.M. Coello de Portugal, R. Tomás
    CERN, Geneva, Switzerland
 
  Machine learning techniques are used in various scientific and industry fields as a powerful tool for data analysis and automatization. The presentation is devoted to exploration of relevant machine learning methods for beam diagnostics. The target is to provide an insight into modern machine learning techniques, which can be applied to improve current beam diagnostics and general applications in accelerators. Possible concepts for future applications are also presented.  
slides icon Slides TUOA02 [2.497 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-TUOA02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA01 Pin Diode in a Medical Accelerator - a Proof of Principle and Preliminary Measurements controls, extraction, beam-diagnostic, proton 208
 
  • A. Pozenel, M. Eichinger, S. Enke, M. Fürtinger, C. Kurfürst, M. Repovž
    EBG MedAustron, Wr. Neustadt, Austria
 
  The MedAustron Ion Therapy Center located south of Vienna, Austria, is a cancer treatment facility utilizing a particle therapy accelerator optimized for protons and carbon ions. The beam is injected into the synchrotron, accelerated to the desired speed and extracted to be guid-ed into one of four irradiation rooms. During extraction a certain amount of particles is lost which is measured with a PIN diode. In this paper the measurement method of this system is presented, as well as some measurement attempts documented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-TUPA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPA16 Signal Processing for Beam Loss Monitor System at Jefferson Lab machine-protect, FPGA, controls, operation 245
 
  • J. Yan, T.L. Allison, S. Bruhwel, W. Lu
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
Ion Chamber and Photomultiplier Tube (PMT) were both used for beam loss monitor in the Machine Protection System (MPS) at Jefferson Lab. The requirements of signal processing of these detectors are different, so two VME-based signal processing boards, Beam Loss Monitor (BLM) board and Ion-Chamber board, were developed. The BLM board has fast response (< 1us) and 5 decades dynamic range from 10nA to 1 mA, while the Ion-Chamber board has 8 decades dynamic range from 100 pA to 10 mA and slower response. Both of boards provide functions of machine protection and beam diagnostics, and have features of fast shutdown (FSD) interface, beam sync interface, built-in-self-test, remotely controlled bias signals, and on-board memory buffer.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-TUPA16  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOC03 A Simple Model to Describe Smoke Ring Shaped Beam Profile Measurements With Scintillating Screens at the European XFEL FEL, electron, scattering, ECR 366
 
  • G. Kube, S. Liu, A.I. Novokshonov, M. Scholz
    DESY, Hamburg, Germany
 
  Standard beam profile measurements of high-brightness electron beams based on OTR may be hampered by coherence effects. Therefore it was decided for the European XFEL to measure transverse beam profiles based on scintillating screen monitors using LYSO:Ce. While it is possible to resolve beam sizes down to a few micrometers with this scintillator, the experience during the XFEL commissioning showed that the measured emittance values were significantly larger than the expected ones. In addition, beam profiles measured at bunch charges of a few hundred pC showed a 'smoke ring' structure. While coherent OTR emission and beam dynamical influence can be excluded, it is assumed that the profile distortions are caused by effects from the scintillator material. Following the experience in high energy physics, a simple model was developed which takes into account quenching effects of excitonic carriers inside a scintillator in a heuristic way. Based on this model, the observed beam profiles can be understood qualitatively. Together with the model description, first comparisons with experiments will be presented, and new scintillators suitable for beam profile diagnostics will be discussed.  
slides icon Slides WEOC03 [2.411 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-WEOC03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA02 Recent Progress of Bunch Resolved Beam Diagnostics for BESSY VSR photon, cavity, beam-diagnostic, operation 379
 
  • J.G. Hwang, T. Atkinson, P. Goslawski, A. Jankowiak, M. Koopmans, M. Ries, A. Schälicke, G. Schiwietz
    HZB, Berlin, Germany
  • T. Mertens
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Berlin, Germany
 
  BESSY VSR is an upgrade project of the existing storage ring BESSY II to create long and short photon pulses simultaneously for all beam lines by installing additional superconducting cavities with harmonic frequencies of 1.5 GHz and 1.75 GHz. The storage-ring operation will be influenced by a transient beam-loading effect of all cavities and by the complex filling pattern due to the disparity in the current of long and short bunches. This, in turn, could introduce a variation of beam trajectory, transverse profile, and length for the different bunches. This stimulates the development of bunch-resolved monitors for bunch length, beam size, filling pattern and beam trajectory displacement. In this paper, we show new developments of crucial beam diagnostics including measurements of the bunch-resolved temporal profile with a resolution of less than 1 ps FWHM and bunch-resolved profile with a resolution of less than 10 um rms. The upgrade of the booster beam-diagnostics will be discussed as well.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-WEPA02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPB02 Development of a a YAG/OTR Monitor photon, background, detector, target 429
 
  • R.J. Yang, P. Bambade, S. Wallon
    LAL, Orsay, France
  • A. Aryshev, T. Naito, N. Terunuma
    KEK, Ibaraki, Japan
  • M. Bergamaschi
    CERN, Geneva, Switzerland
 
  To study the mechanisms of beam halo formation and its dynamics, a YAG/OTR monitor has been developed and tested at the KEK-ATF. The monitor has four ceramic Ce:YAG screens for the visualization of the beam core and beam halo and an OTR target to provide complementary measurements of beam core. A high dynamic range (DNR>105) and a high resolution (<10 um) have been demonstrated through the optimization of light detection, reduction of background and suppression of scintillation saturation. Measurements using this monitor are consistent with previous results and theoretical modeling of beam halo at ATF, and have allowed further progress in the characterization of the driving mechanisms.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-WEPB02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPB03 First Prototype of a Coronagraph-based Halo Monitor for BERLinPro operation, linac, SRF, gun 434
 
  • J.G. Hwang, J. Kuszynski
    HZB, Berlin, Germany
 
  Since particle losses by beam halo induced by space charge force and scattering of trapped ions are critical issues for superconducting-linac based high power machines such as BERLinPro, a halo monitor is demanded to monitor and control particle distribution at the level of 10-4 ~ 10-5 of the core intensity. A coronagraph-based halo monitor was adopted and the first prototype has been designed as a demonstrator system aimed at resolving a halo-core contrast in the 10-3 to 10-4 range. This monitor was tested at BESSY II with various operation modes such as Transverse Resonance Island Buckets (TRIBs) and Pulse-Picking by Resonant Excitation (PPRE). We show our design parameters, experimental criterion, and experimental results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-WEPB03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPB06 Time-Synchronous Measurements of Transient Beam Dynamics at Spear3* feedback, controls, experiment, injection 441
 
  • Q. Lin, Z.H. Sun
    Donghua University, Shanghai, People's Republic of China
  • W.J. Corbett, D.J. Martin, K. Tian
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the China Scholarship Council and the US Department of Energy Contract DE-AC03-76SF00515, Office of Basic Energy Sciences.
Multi-bunch beam instabilities can often be controlled with high-speed digital bunch-by-bunch feedback systems. The detected motion is based on charge centroid measurements that, for short bunches, cannot resolve intrabunch charge dynamics. To compliment the BxB data, we installed a fast-gated camera with a rotating mirror to sweep visible-light synchrotron radiation across the camera CCD. The SR measurements present a complimentary view of the motion. For this work we generated transient beam events in SPEAR3 using the BxB feedback system and synchronously observed the motion on the camera. Results are presented for a high-order multibunch beam instability and for single bunch drive-damp experiments.

 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-WEPB06  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPB11 Spatial Resolution Improvement of OTR Monitors by Off-axis Light Collection radiation, electron, target, FEL 451
 
  • A. Potylitsyn, A.I. Novokshonov, L.G. Sukhikh
    TPU, Tomsk, Russia
  • G. Kube, A.I. Novokshonov
    DESY, Hamburg, Germany
 
  Funding: The work was partly supported by the program "Nauka" of the Russian Ministry of Education and Science, grant #3.1903.2017
The spatial resolution of an OTR monitor for electron beam profile diagnostics is determined by the resolution of the optical system and by the Point Spread Function (PSF) representing the single electron image. In the image plane, the PSF has a typical lobe-shape distribution with an inter-peak distance depending on wavelength and lens aperture ratio [*]. For a beam with a transverse rms size smaller than the distance, the reconstruction of the beam profile has several difficulties [**, ***]. We propose to reduce the PSF contribution and to improve the spatial resolution of an OTR monitor simply by rotating the lens optical axis with respect to the specular reflection direction. If the difference between the rotational angle and the lens aperture is much larger than the inverse Lorentz factor, the PSF has a Gaussian-like distribution which matches practically with the Airy distribution. Thus the resolution depends on wavelength and lens aperture. In principle, for lens apertures in the order of 0.1 rad such an approach should allow to measure beam sizes comparable to the wavelength of observation, using a simple deconvolution procedure for the measured image and the PSF.
* M. Castellano, V.Verzilov, Phys. Rev. ST-AB, 1 (1998).
** K.Kruchinin, S.T.Boogert, P.Karataev et al., Proc. IBIC 2013 (2013).
*** L.G. Sukhikh, A.P. Potylitsyn, G. Kube, Phys. Rev. AB 20 (2017).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-WEPB11  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPB20 Experimental Setup of Apodization Techniques for Beam Diagnostics Performed at ELBE experiment, electron, LabView, software 482
 
  • B.G. Freeman, J. Gubeli, K. Jordan
    JLab, Newport News, Virginia, USA
  • P.E. Evtushenko
    HZDR, Dresden, Germany
 
  The ELBE (Electron Linac for beams with high Brilliance and low Emittance) facility in Dresden, Germany is a multipurpose user facility, which is also used for accelerator R&D purposes. The beam line was set up for transverse beam profile measurements, where the imaging system includes a series of three apodizers and five circular apertures. During beam operations both of these were changed remotely through automated LabView routines. The bunch structure and charge were varied to collect a series of images that were acquired automatically, and then stored for later analysis. Over 12,000 images were captured and then analyzed using software written at Jefferson Lab that runs ImageJ as it's main image processing library.  
poster icon Poster WEPB20 [0.357 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-WEPB20  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPC04 Setup for Beam Profile Measurements using Optical Transition Radiation* target, radiation, electron, linac 494
 
  • J. Pforr, M. Arnold, T. Bahlo, L.E. Jürgensen, N. Pietralla, A. Rost
    TU Darmstadt, Darmstadt, Germany
  • F. Hug
    KPH, Mainz, Germany
 
  Funding: *Work supported by DFG through GRK 2128.
The S-DALINAC is a thrice-recirculating, superconducting linear electron accelerator at TU Darmstadt. It can provide beams of electrons with energies up to 130 MeV and currents of 20 µA. The accelerator performance was improved by an extension of the beam diagnostics, as this increases the reproducibility of the machine settings. Therefore, the installation of several beam profile measurement stations is planned, which should be operational down to a beam current of 100 nA, as this current is used for beam tuning. Combining these devices with a quadrupole scan also allows for emittance measurements. The beam profile measurements shall be done based on optical transition radiation (OTR), resulting from the penetration of relativistic electrons from vacuum into a metal target. The radiation can be detected using standard cameras that provide information on the two-dimensional particle distribution. This contribution will address the layout of the measurement stations and a first test measurement will be presented.
 
poster icon Poster WEPC04 [1.189 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-WEPC04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPC06 The New Diagnostic Suite for the Echo Enabled Harmonic Generation Experiment at FERMI laser, electron, FEL, bunching 501
 
  • M. Veronese, A. Abrami, E. Allaria, M. Bossi, I. Cudin, M.B. Danailov, R. De Monte, M. Ferianis, F. Giacuzzo, S. Grulja, G. Kurdi, P. Rebernik Ribič, R. Sauro, G. Strangolino
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  The Echo Enabled Harmonic Generation (EEHG) experiment has been implemented on the FEL2 line of the FERMI FEL at Elettra (Italy). The main purpose is to validate the expected performance improvements at short wavelengths before a dedicated major upgrade is deployed. This paper describes the new diagnostics and the operational experience with them during the EEHG experiment. By means of a multi position vacuum vertical manipulator, different optical components are positioned on the electron and seed laser path. Both transverse and longitudinal measurements are performed. A YAG:Ce screen (e beam) and a terbium doped UV scintillator (laser) are imaged on a dedicated CMOS camera. For the temporal alignment, an OTR screen and a scattering surface are used to steer radiation from the e-beam and laser, onto a fast photodetector. Also coherent OTR radiation, due to micro-bunching, is acquired by means of a PbSe photodetector. Finally, for the normal EEHG operation, the laser beam is injected on the electron beam axis by means of a UV reflecting mirror. The results of the installed diagnostics commissioning are here presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-WEPC06  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPC15 Machine Learning Applied to Predict Transverse Oscillation at SSRF SRF, injection, network, storage-ring 512
 
  • B. Gao, J. Chen, Y.B. Leng, Y.M. Zhou
    SINAP, Shanghai, People's Republic of China
 
  A fast beam size diagnostic system has been developed at SSRF (Shanghai Synchrotron Radiation Facility) storage ring for turn-by-turn and bunch-by-bunch beam transverse oscillation study. This system is based on visible synchrotron radiation direct imaging system. Currently, this system already has good experimental results. However, this system still has some limitations, the resolution is subject to the point spread function and the speed of online data processing is limited by the complex algorithm. We present a technique that applied machine learning tools to predict transverse oscillation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-WEPC15  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPC17 X-ray Pinhole Camera in the Diagnostics Beamlime BL7B at PLS-II photon, electron, radiation, beam-diagnostic 519
 
  • J.J. Ko, J.Y. Huang, D. Kim, D.W. Lee, B.H. Oh, S. Shin, J. U. Yu
    PAL, Pohang, Kyungbuk, Republic of Korea
  • M. Yoon
    POSTECH, Pohang, Kyungbuk, Republic of Korea
 
  The beam diagnostics beamline BL7B using synchrotron radiation with 8.6 keV critical photon energy from bending magnet has been used to measure the electron-beam size and photon-beam profile on real-time basis. After the completion of the PLS-II, the Compound Refractive Lens (CRL) system was implemented in the optical hutch at BL7B to measure the electron-beam size from X-ray imaging. But we could not have a good image due to short focal length caused by limited space of the optical hutch. To solve this problem a Pinole Camera is implemented in the front-end of BL7B in return for the beamline extension. The progresses on the new x-ray imaging system is introduced in this presentation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-WEPC17  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOA02 High-Speed Direct Sampling FMC for Beam Diagnostic and Accelerator Protection Applications interface, FEL, controls, timing 534
 
  • J. Zink, M.K. Czwalinna, M. Fenner, S. Jabłoński, J. Marjanovic, H. Schlarb
    DESY, Hamburg, Germany
 
  The rapid development in the field of digitizers is leading to Analog-to-Digital Converters (ADC) with ever higher sampling rates. Nowadays many high-speed digitizers for RF applications and radio communication are available, which can sample broadband signals, without the need of down converters. These ADCs fit perfectly into beam instrumentation and diagnostic applications, e.g. Bunch Arrival time Monitor (BAM), klystron life-time management or continuous wave synchronization. To cover all these high-frequency diagnostic applications, DESY has developed a direct sampling FMC digitizer board based on a high-speed ADC with an analog input bandwidth of 2.7 GHz. A high-speed data acquisition system capable of acquiring 2 channels at 800 MSP/s will be presented. As first model application of the versatile digitizer board is the coarse bunch arrival time diagnostics in the free electron laser FLASH at DESY.  
slides icon Slides THOA02 [5.817 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-THOA02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOB01 Injection Transient Study Using 6-Dimensional Bunch-by-bunch Diagnostic System at SSRF* SRF, injection, extraction, kicker 542
 
  • Y.M. Zhou, Y.B. Leng, N. Zhang
    SSRF, Shanghai, People's Republic of China
  • B. Gao
    SINAP, Shanghai, People's Republic of China
 
  Beam instability often occurs in the accelerator and even causes beam loss. The beam injection transient process provides an important window for the study of beam instability. Measurement of the bunch-by-bunch dynamic parameters of the storage ring is useful for accelerator optimization. A 6-dimensional bunch-by-bunch diagnostic system has been successfully implemented at SSRF. The measurements of transverse position and size and longitudinal phase and length are all completed by the system. Button BPM is used to measure beam position, phase, and length, and the synchrotron radiation light is used to beam size measurement. Signals are sampled simultaneously by a multi-channel acquisition system with the same clock and trigger. Different data processing methods are used to extract the 6-dimensional information, where the delta-over-sum algorithm for beam position extraction, the Gaussian fitting algorithm for beam size extraction, zero-crossing detection algorithm for beam phase extraction and the two-frequency method for bunch length extraction. The system set up and performance will be discussed in more detail in this paper.  
slides icon Slides THOB01 [7.413 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-THOB01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)