Keyword: electronics
Paper Title Other Keywords Page
MOOA02 Noise in Radio/Optical Communications electron, radio-frequency, laser, optics 1
 
  • M. Vidmar
    University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia
 
  Noise is a random signal that affects the performance of all electronic and/or optical devices. Although the sources of different kinds of noise have their backgrounds in physics, engineers dealing with noise use different methods and units to specify noise. The intention of this tutorial is to describe the main effects of noise in electronics up to optical frequencies while providing links between the physics and engineering worlds. In particular, noise is considered harmful while degrading the signal-to-noise ratio or broadening the spectrum of signal sources. On the other hand, noise can be itself a useful signal. Finally, artificially generated signals that exhibit many properties of random natural noise are sometimes required.  
slides icon Slides MOOA02 [3.742 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-MOOA02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOOB03 Upgrade and Status of Standard Diagnostic-Systems at FLASH and FLASHForward FEL, electron, diagnostics, cavity 13
 
  • N. Baboi, H.T. Duhme, O. Hensler, G. Kube, T. Lensch, D. Lipka, B. Lorbeer, Re. Neumann, P.A. Smirnov, T. Wamsat, M. Werner
    DESY, Hamburg, Germany
 
  Electron beam diagnostics plays a crucial role in the precise and reliable generation of ultra-short high bril-liance XUV and soft X-ray beams at the Free Electron Laser in Hamburg (FLASH). Most diagnostic systems monitor each of up to typically 600 bunches per beam, with a frequency of up to 1 MHz, a typical charge be-tween 0.1 and 1 nC and an energy of 350 to 1250 MeV. The diagnostic monitors have recently undergone a major upgrade. This process started several years ago with the development of monitors fulfilling the requirements of the European XFEL and of the FLASH2 undulator beamline and it continued with their installation and commissioning. Later they have been further improved and an upgrade was made in the old part of the linac. Also the FLASHForward plasma-wakefield acceleration experiment has been installed in the third beamline. This paper will give an overview of the upgrade of the BPM, Toroid and BLM systems, pointing out to their improved performance. Other systems underwent a partial upgrade, mainly by having their VME-based ADCs replaced with MTCA type. The overall status of the diagnostic will be reviewed.  
slides icon Slides MOOB03 [2.728 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-MOOB03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPB13 Active Magnetic Field Compensation System for SRF Cavities cavity, SRF, controls, electron 101
 
  • L.H. Ding
    Laboratory GREYC, Caen, France
  • J. Liang, H. Liu, Z.P. Xie
    Hohai University, Nanjing, People's Republic of China
  • Z.P. Xie
    IMP/CAS, Lanzhou, People's Republic of China
 
  Abstract: Superconducting Radio Frequency (SRF) cavities are becoming popular in modern particle accelerators. When the SRF cavity is transitioning from the non-conducting to the Superconducting state at the critical temperature (Tc), the ambient magnetic field can be trapped. This trapped flux may lead to an increase in the surface resistance of the cavity wall, which can reduce the Q-factor and efficiency of the cavity. In order to increase the Q-factor, it is important to lower the surface resistance by reducing the amount of magnetic flux trapped in the cavity wall to sub 10mG range during the Tc transition. In this paper, we present a 3-axis automatic active magnetic field compensation system that is capable of reducing the earth magnetic field and any local disturbance field. Design techniques are described to enhance the system stability while utilizing the flexibility of embedded electronics. This paper describes the system implementation and concludes with initial results of tests. Experimental results demonstrate that the proposed magnetic field compensation system can reduce the earth magnetic field to around 2.5 mG even without shielding.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-MOPB13  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPC10 Upgrade and Improvement of CT Based on TMR electron, simulation, vacuum, operation 134
 
  • Y. Zhao, Y.Y. Du, L. Wang
    IHEP, Beijing, People's Republic of China
 
  The CT based on TMR sensor has been developed in the lab. For Improving the accuracy and linearity, re-ducing the influence of sensor position, a series simu-lation and calculation have been done which conduct an upgrade both in the mechanical structure and elec-tronics design. Lab test shows good results and test on beam will be carried on soon.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-MOPC10  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOC03 Commissioning of the Open Source Sirius BPM Electronics electron, controls, FPGA, Ethernet 196
 
  • S.R. Marques, G.B.M. Bruno, L.M. Russo, H.A. Silva, D.O. Tavares
    LNLS, Campinas, Brazil
 
  The new Brazilian 4th generation light source, Sirius, have already started and commissioning is planned to start in 2018. This paper will report on the manufacturing, deployment and production batch testing of the in-house developed BPM electronics. The latest performance and reliability achievements will be presented.  
slides icon Slides TUOC03 [14.606 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-TUOC03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOC04 Development of Beam Position Monitor for the SPring-8 Upgrade electron, radiation, vacuum, brilliance 204
 
  • H. Maesaka
    RIKEN SPring-8 Center, Innovative Light Sources Division, Hyogo, Japan
  • H. Dewa, T. Fujita, M. Masaki, S. Takano
    JASRI, Hyogo, Japan
 
  We are developing a new electron beam position monitor (BPM) system for the low-emittance upgrade of SPring-8. The requirements for the BPM system are: (1) a single-pass resolution of 100 µm rms for a 100 pC bunch and an electric center accuracy of 100 µm rms for the initial beam commissioning to achieve the first turn, (2) a closed-orbit distortion (COD) resolution better than 0.1 µm rms for a 100 mA stored beam and a position stability of less than 5 µm for the ultimate stability of a photon beam axis. We have completed prototypes of a precise button electrode and a BPM block to obtain high-intensity signals and sufficient mechanical accuracy while suppressing high-Q trapped modes leading to impedance and heating issues. The development of readout electronics based on the MTCA.4 standard and the evaluation of radiation-hard coaxial cables have also been conducted. The prototype BPM head was installed in the present SPring-8 storage ring for performance verification with an actual electron beam. We confirmed sufficient signal intensity, electric center accuracy, position stability, etc. by the beam test. The new BPM system is almost ready for the SPring-8 upgrade.  
slides icon Slides TUOC04 [2.126 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-TUOC04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPB01 The Installation and Commissioning of the AWAKE Stripline BPM electron, proton, MMI, TRIUMF 253
 
  • S. Liu, P.E. Dirksen, V.A. Verzilov
    TRIUMF, Vancouver, Canada
  • S.J. Gessner, F. Guillot-Vignot, D. Medina, L. Søby
    CERN, Geneva, Switzerland
 
  Funding: # TRIUMF contribution was supported by NSERC and CNRC
AWAKE (The Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN) stripline BPMs are required to measure the position of the single electron bunch to a position resolution of less than 10 µm rms for electron charge of 100 pC to 1 nC. This paper describes the design, installation and commissioning of a such BPM system developed by TRIUMF (Canada). Total 12 BPMs and electronics had been installed on AWAKE beam lines and started commissioning since Fall of 2017. The calibration and measurement performance are also reviewed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-TUPB01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPB02 Complete Test Results of New BPM Electronics for the ESRF New LE-Ring electron, SRF, controls, MMI 257
 
  • K.B. Scheidt
    ESRF, Grenoble, France
 
  Among the 320 BPMs in the ESRF new low emittance ring, a set of 128 units will be equipped with new electronics, while the other set (192) will be served by the existing Libera-Brilliance electronics. These new electronics are an upgraded version of the low-cost Spark electronics originally developed 3 years ago for the ESRF Injector complex. All these 128 units have been installed in the first half of 2018 on existing BPM signals (through duplication with RF-splitters) and subsequently been tested thoroughly for performance characteristics like stability, resolution and reliability. It will be shown that while these Sparks have a very straightforward and simple concept, i.e. completely omitting calibration schemes like RF-cross-bar switching, pilot-tone introduction or active temperature control, that they are fully compatible with all the beam position measurement requirements of this new ring.  
poster icon Poster TUPB02 [1.577 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-TUPB02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPB03 Results of SPIRAL2 Beam Position Monitors on the Test Bench of the RFQ linac, operation, electron, rfq 261
 
  • M. Ben Abdillah, P. Ausset
    IPN, Orsay, France
  • R. Ferdinand
    GANIL, Caen, France
 
  SPIRAL2 project is based on a multi-beam superconducting LINAC designed to accelerate 5 mA deuteron beams up to 40 MeV, proton beams up to 33 MeV and 1 mA light and heavy ions (Q/A = 1/3) up to 14.5 MeV/A. The accurate tuning of the LINAC is essential for the operation of SPIRAL2 and requires measurement of the beam transverse position, the phase of the beam with respect to the radiofrequency voltage, the ellipticity of the beam and the beam energy with the help of Beam Position Monitor (BPM) system. The commissioning of the RFQ gave us the opportunity to install two BPM sensors, associated with their electronics, mounted on a test bench. The test bench is a D-plate fully equipped with a complete set of beam diagnostic equipment in order to characterize as completely as possible the beam delivered by the RFQ and to gain experience with the behavior of these diagnostics under beam operation. This paper addresses the measurements carried with the two BPMs on the Dplate: energy, transverse position and ellipticity under 750 KeV proton beam operation  
poster icon Poster TUPB03 [1.443 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-TUPB03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPB13 Stability Tests with Pilot-Tone Based Elettra BPM RF Front End and Libera Electronics electron, pick-up, ISOL, controls 289
 
  • M. Cargnelutti, P. Leban, M. Žnidarčič
    I-Tech, Solkan, Slovenia
  • S. Bassanese, G. Brajnik, S. Cleva, R. De Monte
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  Long-term stability is one of the most important properties of the BPM readout system. Recent developments on pilot tone capable front end have been tested with an established BPM readout electronics. The goal was to demonstrate the effectiveness of the pilot tone compensation to varying external conditions. Simulated cable attenuation change and temperature variation of the readout electronics were confirmed to have no major effect to position data readout. The output signals from Elettra front end (carrier frequency and pilot tone frequency) were processed by a Libera Spark with the integrated standard front end which contains several filtering, attenuation and amplification stages. Tests were repeated with a modified instrument (optimized for pilot tone) to compare the long-term stability results. Findings show the pilot tone front end enables great features like self-diagnostics and cable-fault compensation as well as small improvement in the long-term stability. Measurement resolution is in range of 10 nanometers RMS in 5 Hz bandwidth.  
poster icon Poster TUPB13 [1.223 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-TUPB13  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPC03 Beam Quality Monitoring System in the HADES Experiment at GSI Using CVD Diamond Material* detector, monitoring, electron, experiment 300
 
  • A. Rost, T. Galatyuk
    TU Darmstadt, Darmstadt, Germany
  • J. Adamczewski-Musch, S. Linev, J. Pietraszko, M. Traxler
    GSI, Darmstadt, Germany
 
  Funding: *Work supported by the DFG through GRK 2128 and VH-NG-823.
The beam quality monitoring of extracted beams from SIS18, transported to the HADES experiment, is of great importance to ensure high efficiency data recording. The main detector system used for this purpose is the Start-Veto system which consists of two diamond based sensors made of pcCVD and scCVD materials. Both sensors are equipped with a double-sided strip segmented metalization (300 µm width) which allows a precise position determination of the beam position. Those senors are able to deliver a time precision <100 ps and can handle rate capabilities up to 107 particles/channel. The read-out of the sensors is based on the TRB3 system [1]. Precise FPGA-TDCs (264 channels, <10 ps RMS) are implemented inside FPGAs. The TRB3 system serves as data acquisition system with scaler capability. Analysis and on-line visualization will be performed in DABC [2]. Having the precise time measurement and a precise position information of the incoming beam ions one can monitor important beam parameters namely the beam intensity, its position during extraction and the beam time structure. In this contribution the general read-out concept will be introduced.
[1] A. Neiser et al., TRB3: a 264 channel high precision TDC platform and its applications, 2013 JINST 8 C12043.
[2] dabc.gsi.de, 30.05.2018
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-TUPC03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPC04 BPM System Upgrade at COSY controls, EPICS, electron, operation 303
 
  • V. Kamerdzhiev, I. Bekman, C. Böhme, B. Lorentz, S. Merzliakov, P. Niedermayer, K. Reimers, M. Simon, M. Thelen
    FZJ, Jülich, Germany
 
  The beam position monitoring system of the Cooler Synchrotron (COSY) has been upgraded in 2017. The upgrade was driven by the requirement of the JEDI collaboration to significantly improve the orbit control and by the electronics approaching end-of-life. The entire signal processing chain has been replaced. The new low noise amplifiers, mounted directly on the BPM vacuum feedthroughs, were developed in-house and include adjustable gain in 80 dB rage and in-situ test and calibration capabilities. The signals are digitized and processed by means of commercial BPM signal processing units featuring embedded EPICS IOC. The decision path, technical details of the upgrade and performance of the new system are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-TUPC04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPC07 First Results of Button BPMs at FRIB electron, linac, MMI, pick-up 311
 
  • S. Cogan, J.L. Crisp, T.M. Ford, S.M. Lidia
    FRIB, East Lansing, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University.
Commissioning and tuning the linac driver for the Facility for Rare Isotope Beams (FRIB) requires a large network of warm and cryogenic BPMs, with apertures of 40 - 150 mm, sensitivity to beam currents of 100 nA to 1 mA, and accurate for beams with velocities as low as 0.03c. We present initial results of the BPM system, analog and digital signal processing, distortion and error correction, and calibration for time of flight (TOF) measurements. Measurements for low energy beams are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-TUPC07  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOB02 RadFET Dose Monitor System for SOLEIL radiation, electron, vacuum, storage-ring 353
 
  • N. Hubert, F. Dohou, M. El Ajjouri, D. Pédeau
    SOLEIL, Gif-sur-Yvette, France
 
  Soleil is currently testing new dose monitors based on RadFET transistors. This new detector at SOLEIL will provide a measurement of the dose received by equipment that are damaged by the radiations in the storage ring, and to anticipate their replacement. This monitor should be very compact to be placed in tiny areas, sensitive to all kind of radiation and low cost to install many of them around the ring. A readout electronic module is being developed in-house, and a first prototype has been build and installed on the machine. Description of the system and first results recorded on the machine are presented.  
slides icon Slides WEOB02 [4.250 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-WEOB02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA07 Beam Phase Measurement System in CSNS Linac linac, DTL, electron, MMI 386
 
  • P. Li
    IHEP CSNS, Dongguan, People's Republic of China
  • F. Li, T.G. Xu
    IHEP, Beijing, People's Republic of China
  • M. Meng
    DNSC, Dongguan, People's Republic of China
  • J. Peng
    CSNS, Guangdong Province, People's Republic of China
  • W. Peng
    CETC, Shushan, People's Republic of China
 
  We developed beam phase measurement system ourselves in CSNS (China Spallation Neutron Source). The resolution of the system is less than 0.1° and the accuracy is less than 1°. It played a key role in CSNS Linac commissioning especially in RFQ and DTL commissioning. Further we measured the beam energy by TOF (Time of Flight) method base on this system. The energy accuracy is less than 0.1 MeV.  
poster icon Poster WEPA07 [1.070 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-WEPA07  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPA15 Development of BAM Electronics in PAL-XFEL electron, pick-up, controls, FEL 400
 
  • D.C. Shin, J.H. Hong, H.-S. Kang, C. Kim, G. Kim, C.-K. Min
    PAL, Pohang, Republic of Korea
 
  We describe an electronics for electron bunch arrival time monitor (BAM) with a less than 10 femtosecond resolution, which was developed in 2017 and is currently in use at PAL-XFEL. When electron bunches go through an S-band monopole cavity, about 1 us long RF signal can be obtained to compare with a low phase noise RF reference. The differential phase jitter corresponds to the arrival time jitter of electron bunches. RF front-end (F/E) which converts the S-band pickup signal to intermediate frequency (IF) signal, is the essential part of a good time resolution. The digitizer and the signal processor of the BAM electronics are installed in an MTCA platform. This paper presents the design scheme, test results of the BAM electronics and future improvement plans.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-WEPA15  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPB15 A Multipurpose Scintillating Fibre Beam Monitor for the Measurement of Secondary Beams at CERN experiment, electron, detector, secondary-beams 468
 
  • I. Ortega Ruiz, L. Fosse, J. Franchi, A. Frassier, J. Fullerton, J. Kral, J. Lauener, T. Schneider, J. Spanggaard, G. Tranquille
    CERN, Geneva, Switzerland
 
  A scintillating fibre beam monitor has been developed at CERN for the measurement of low energy and low intensity secondary beams. This monitor can track the passage of individual particles up to intensities of 107 particles per second per mm2, over an active area of 20 cm x 20 cm, and with a spatial resolution of 1 mm. Thanks to an external trigger system, the achieved detection efficiency is 95% and the noise level is kept below 10-4 events/second. The simple design of this monitor avoids the common production difficulties of scintillating fibre detectors and makes its maintenance easier, when compared to other tracking detectors, due to the absence of gas or cooling. Using special electronics, a version of the monitor can also be used for time-of-flight measurements, achieving a time resolution of 900 ps. Thanks to its versatility, the monitor will perform several functions when measuring the secondary beams of the CERN Neutrino Platform: beam profile, position and intensity measurement, magnetic momentum spectrometry, particle identification through time-of-flight, and trigger generation for the experiments.  
poster icon Poster WEPB15 [1.172 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-WEPB15  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)