Keyword: kicker
Paper Title Other Keywords Page
MOPB04 Progress in the Stripline Kicker for ELBE simulation, electron, laser, radiation 78
  • Ch. Schneider, A. Arnold, J. Hauser, P. Michel
    HZDR, Dresden, Germany
  The linac based cw electron accelerator ELBE operates different secondary beamlines one at a time. For the future different end stations should be served simultaneously, hence specific bunch patterns have to be kicked into different beam-lines. The variability of the bunch pattern and the frequency resp. switching time are one of the main arguments for a stripline-kicker. A design with two tapered active electrodes and two ground fenders was optimized in time and frequency domain with the software package CST. From that a design has been transferred into a construction and was manufactured. The presentation summarises the recent results and the status of the project.  
DOI • reference for this paper ※  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOPC18 Development of an Expert System for the High Intensity Neutrino Beam Facility at J-PARC operation, status, septum, experiment 154
  • K. Nakayoshi, Y. Fujii, T. Nakadaira, K. Sakashita
    KEK, Ibaraki, Japan
  A high intensity neutrino beam is utilized by a long-baseline neutrino oscillation experiment at J-PARC. To generate a high intensity neutrino beam, a high intensity proton beam is extracted from a 30GeV Main Ring Synchrotron (MR) to the neutrino primary beamline. In the beamline, one mistaken shot can potentially do serious damage to beamline equipment. To avoid such a consequence, many beamline equipment interlocks to stop the beam operation are implemented. Once an interlock is activated, prompt and proper error handling is necessary. We are developing an expert system for prompt and efficient understanding of the status to quickly resume the beam operation. An inference engine is one key component in the expert system. We are developing a Machine-Learning(ML) based inference engine for our expert system. ML is one of the most active research fields in computing, we adopt the technology from it. We report the progress of development of the expert system especially ML based inference engine.  
DOI • reference for this paper ※  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPC11 Design of an Ultrafast Stripline Kicker for Bunch-by-Bunch Feedback FEL, impedance, HOM, electron 322
  • J. Wang, P. Li, D. Wu, D.X. Xiao, L.G. Yan
    CAEP/IAE, Mianyang, Sichuan, People's Republic of China
  Funding: Work supported by China National Key Scientific Instrument and Equipment Development Project (2011YQ130018), National Natural Science Foundation of China (11475159, 11505173, 11575264 and 11605190)
The CAEP THz Free Electron Laser (CTFEL) will have a fast transverse bunch-by-bunch feedback system on its test beamline, which is used to correct the beam position differences of individual bunches with interval of about 2 ns. In this paper, we are proposing an ultrafast wideband stripline kicker, which is able to provide a kick to the bunch in a 2 ns time window. The structure design and simulation results of this kicker are also discussed.
DOI • reference for this paper ※  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
THOB01 Injection Transient Study Using 6-Dimensional Bunch-by-bunch Diagnostic System at SSRF* SRF, injection, extraction, diagnostics 542
  • Y.M. Zhou, Y.B. Leng, N. Zhang
    SSRF, Shanghai, People's Republic of China
  • B. Gao
    SINAP, Shanghai, People's Republic of China
  Beam instability often occurs in the accelerator and even causes beam loss. The beam injection transient process provides an important window for the study of beam instability. Measurement of the bunch-by-bunch dynamic parameters of the storage ring is useful for accelerator optimization. A 6-dimensional bunch-by-bunch diagnostic system has been successfully implemented at SSRF. The measurements of transverse position and size and longitudinal phase and length are all completed by the system. Button BPM is used to measure beam position, phase, and length, and the synchrotron radiation light is used to beam size measurement. Signals are sampled simultaneously by a multi-channel acquisition system with the same clock and trigger. Different data processing methods are used to extract the 6-dimensional information, where the delta-over-sum algorithm for beam position extraction, the Gaussian fitting algorithm for beam size extraction, zero-crossing detection algorithm for beam phase extraction and the two-frequency method for bunch length extraction. The system set up and performance will be discussed in more detail in this paper.  
slides icon Slides THOB01 [7.413 MB]  
DOI • reference for this paper ※  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)