MOOB —  Overview and commissioning   (10-Sep-18   11:00—12:30)
Chair: A. Jansson, ESS, Lund, Sweden
Paper Title Page
MOOB01 Beam Commissioning of SuperKEKB Rings at Phase-2 6
  • M. Tobiyama, M. Arinaga, J.W. Flanagan, H. Fukuma, H. Ikeda, H. Ishii, S.H. Iwabuchi, G.M. Mitsuka, K. Mori, M. Tejima
    KEK, Ibaraki, Japan
  • G. Bonvicini
    Wayne State University, Detroit, Michigan, USA
  • E. Mulyani
    Sokendai, Ibaraki, Japan
  • G.S. Varner
    University of Hawaii, Honolulu,, USA
  The Phase 2 commissioning of SuperKEKB rings with Belle II detector began in Feb. 2018. Staring the commissioning of positron damping ring (DR), the injection and storage of the main rings (HER and LER) smoothly continued in Apr., 2018. The first collision has been achieved on 26th Apr. with the detuned optics (200 mm x 8 mm). Performance of beam instrumentation systems and the difficulties encountered during commissioning time will be shown.  
slides icon Slides MOOB01 [11.232 MB]  
DOI • reference for this paper ※  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
Design of Beam Diagnostics System for Heavy Ion Accelerator Facility, RAON  
  • H.J. Woo, Y.S. Chung, G.D. Kim
    IBS, Daejeon, Republic of Korea
  • J.W. Kwon
    Korea University, Seoul, Republic of Korea
  The ultimate goal of the superconducting LINAC at RISP is to accelerate uranium and proton beams up to 200 MeV/u and 600 MeV, with a maximum beam currents of 8.3 pµA and 660 pµA, respectively. The driver linac is divided into several sections: low energy superconducting linac SCL1 for stable ions and SCL3 for rare isotopes, charge stripper section, and high energy superconducting linac (SCL2). Various types of beam diagnostic devices such as beam current monitor, beam position monitor (BPM), beam profile monitor, beam phase monitor, and beam loss monitor, etc. are required for the setting of accelerator parameters, the monitoring and control of beam acceleration and transport, and improvement of accelerator system. The arrangement of beam diagnostic devices was initially based on the result of beam dynamics calculation, and now the overall layout becomes almost settled. More than 600 devices will be installed for commissioning and normal operation. This report introduces the overall layout of the beam diagnostic system and present status of the system construction.  
slides icon Slides MOOB02 [5.961 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOOB03 Upgrade and Status of Standard Diagnostic-Systems at FLASH and FLASHForward 13
  • N. Baboi, H.T. Duhme, O. Hensler, G. Kube, T. Lensch, D. Lipka, B. Lorbeer, Re. Neumann, P.A. Smirnov, T. Wamsat, M. Werner
    DESY, Hamburg, Germany
  Electron beam diagnostics plays a crucial role in the precise and reliable generation of ultra-short high bril-liance XUV and soft X-ray beams at the Free Electron Laser in Hamburg (FLASH). Most diagnostic systems monitor each of up to typically 600 bunches per beam, with a frequency of up to 1 MHz, a typical charge be-tween 0.1 and 1 nC and an energy of 350 to 1250 MeV. The diagnostic monitors have recently undergone a major upgrade. This process started several years ago with the development of monitors fulfilling the requirements of the European XFEL and of the FLASH2 undulator beamline and it continued with their installation and commissioning. Later they have been further improved and an upgrade was made in the old part of the linac. Also the FLASHForward plasma-wakefield acceleration experiment has been installed in the third beamline. This paper will give an overview of the upgrade of the BPM, Toroid and BLM systems, pointing out to their improved performance. Other systems underwent a partial upgrade, mainly by having their VME-based ADCs replaced with MTCA type. The overall status of the diagnostic will be reviewed.  
slides icon Slides MOOB03 [2.728 MB]  
DOI • reference for this paper ※  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOOB04 Upgrade of the Machine Protection System Toward 1.3 MW Operation of the J-PARC Neutrino Beamline 18
  • K. Sakashita, M.L. Friend, K. Nakayoshi
    KEK, Ibaraki, Japan
  • Y. Koshio, S. Yamasu
    Okayama University, Faculty of Science, Okayama City, Japan
  The machine protection system (MPS) is one of the essential components to realize safe operation of the J-PARC neutrino beamline, where a high intensity neutrino beam for the T2K long baseline neutrino oscillation experiment is generated by striking 30GeV protons on a graphite target. The proton beam is extracted from the J-PARC main ring proton synchrotron (MR) into the primary beamline. The beamline is currently operated with 485kW MR beam power. The MR beam power is planned to be upgraded to 1.3+ MW. The neutrino production target could be damaged if the high intensity beam hits off-centered on the target, due to non-uniform thermal stress. Therefore, in order to protect the target, it is important to immediately stop the beam when the beam orbit is shifted. A new FPGA-based interlock module, with which the beam profile is calculated in real time, was recently developed and commissioned. This module reads out signals from a titanium-strip-based secondary emission profile monitor (SSEM) which is placed in the primary beamline. An overview of the upgrade plan of the MPS system and the results of an initial evaluation test of the new interlock module will be discussed.  
slides icon Slides MOOB04 [8.367 MB]  
DOI • reference for this paper ※  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)