The Diagnostic System at the European XFEL; Commissioning and First User Operation

Dirk Nölle on behalf of the European XFEL Diagnostic/Commissioning Team

IBIC’18, September 11th, 2018
The European XFEL between Hamburg Bahrenfeld and Schenefeld

- Super conducting accelerator with up to 17.5 GeV electron beam energy.
- Three undulator beamlines in two branches (north and south).
- In total 6 experiments, 4 for hard X-rays and 2 for soft X-rays.
Schematic accelerator overview

Injector
1.3 GHz module
3.9 GHz 3rd harm.

L1
4 modules
(1 RF station)

L2
12 modules
(3 RF stations)

L3
80 modules
(20 RF stations)

Collimation
6 ... 17.5 GeV

BC2
2.4 GeV

AH1

Gun

Dogleg, BC0

BC1

9 kW

0.24 kW

5 kW

300 kW

300 kW

300 kW

0 m

40 m

240 m

470 m

1460 m

2130 m

2440 m

3100 m
The European XFEL covers photon energies from 0.25 keV to 25 keV

![Diagram showing photon energy ranges for Soft X-rays and Hard X-rays](image)

Soft X-rays
- SASE 3 (68 mm)
- 0.25 – ≥ 3 keV

Hard X-rays
- SASE 1&2 (40 mm)
- 3.0 – ~25 keV

Working point during user runs:
- 14 GeV electron beam energy
- 7.5 - 14 keV photon energy (SASE1).
The longest superconducting linac in the world is in operation

- 96 superconducting modules in a single cryostat in the main tunnel
- Plus 2 injector modules
- RF components and electronics rack are located below the accelerator.
Energy reach of European XFEL modules

- The accelerator is commissioned accordingly to schedule and towards expected parameters.
- All 25 RF stations are in operation.
- The maximum electron beam energy so far is 17.5 GeV, user operation with 14.0 GeV.
- There is still potential to increase the RF performance.
Commissioning timeline

First user runs started in September 2017 (SASE1 beamline)

- **Jan 13, 2017**
 - First Lasing SASE2
 - May 1, 2018

- **Jan 15, 2017 @ 130 MeV**
 - Jan 19, 2017 @ 600 MeV

- **Feb 2, 2017 @ 600 MeV**
 - Feb 22, 2017 @ 2.5 GeV

- **Feb 25, 2017 @ 2.5 GeV**
 - March 19, 2017 @ 6 GeV
 - April 8, 2017 @ 12 GeV

- **May 2-3, 2017**
 - First light from SASE1 @ 9 Å

- **May 2-3, 2017**
 - First light from SASE3 @ 1.3 nm

- **February 8, 2018**
 - First light from SASE2
Parallel operation of three beamlines

- Bunches send to TLD during rise time of the distribution kicker.
... and now with 3 FELs on.
SASE delivery with 5000 bunches per second

- The maximum number of SASE pulses generated so far in the SASE1 beamline was 5000/s.
- The pulse train was lasing homogeneously over almost all bunches.
- Limitation by safety to 600/s.
- This number will be increased step by step according to upgrade of safety systems of the photon beamlines.

> 6 W X-ray power!
Highest Photon Energy Operation at SASE1

Photon Pulse Energy [mJ] vs. Photon Energy [keV]

- Typical Values [mJ]
- Test Run 1 (27.-28.7) [mJ]
- Test Run 2 (29.7.) [mJ]
- Test Run 3 (2.8.) [mJ]

• 14 GeV
• 250 pC
• Only Undulator Gap Change
Commissioning of Standard Electron Beam Diagnostics
(Slide from DEELS WS 2016)

Goal:
- Do Machine Commissioning with Diagnostics

AND NOT
- Do Diagnostics Commissioning with the Beam

Nevertheless
- It is an iterative process
- Start with poor performance, but be able to see and to improve the beam
- See signals and optimize the parameters to improve the performance of the diagnostics.
- Get both working: Beam and Diagnostics.

Therefore
- Technical Commissioning: Prepare devices, check and test interfaces and communication prior to beam operation.
- Basic Commissioning: Diagnostic guys have to join the first shifts, and support until beam operation is established.
- Advanced Commissioning: Use dedicated beam time to bring the systems to good performance.
Size of the Diagnostics System of EXFEL

<table>
<thead>
<tr>
<th>Installed Diagnostics Items</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam Position Monitors</td>
<td>453</td>
</tr>
<tr>
<td>Charge Monitors</td>
<td>51</td>
</tr>
<tr>
<td>Screens</td>
<td>67</td>
</tr>
<tr>
<td>Wire Scanners</td>
<td>12</td>
</tr>
<tr>
<td>Loss Monitors</td>
<td>474</td>
</tr>
<tr>
<td>Dosimetry Systems</td>
<td>630</td>
</tr>
<tr>
<td>Transverse Deflecting Structures</td>
<td>2</td>
</tr>
<tr>
<td>Bunch Compression Monitors</td>
<td>4</td>
</tr>
<tr>
<td>Beam Arrival Time Monitors</td>
<td>7</td>
</tr>
<tr>
<td>Electro-Optical Systems</td>
<td>3</td>
</tr>
</tbody>
</table>
BPM System: Features

- In Kind Contribution and Joint Project of PSI, CEA and DESY

- Triggered mode and Self Trigger -> 1. Beam Steering: almost lost bunches gave position data

- Automatic gain control [AGC] for increased dynamic range for button and cavity BPMs
 - For single pulse operation: AGC off and estimation of attenuators according user settings

- Timing stabilization of cavity and re-entrant signals via synchronized external clock signal
 - But for missing external signal: an internal clock signal can be used

- Additional Features:
 - Pre-calibration of each BPM system before first beam -> already calibrated system from 1. day
 - Integrated FMC: Dosimetry device for online measurement at electronics
 - MPS interface: Orbit walk off alarms
 - Fast data link for feedback applications
 - Maintenance network connection, 2nd access channel for control and maintenance,
 - Remote firm- and software updates
 - Electronics with control of temperature and active stabilization
BPM System (Resolution)

- Red: Buttons
- Green: Re-entrant Cavity BPM
- Blue: Cavity BPM
- The first 6 cavity BPMs: higher resolutions due to 10 dB attenuation.
- The 10 µm resolution for 2 button BPMs at about 2000 m position is due to 100 mm pipe diameter.
Special BPM: Energy BPM / Compressor Chicane

- Button array of 26 “standard” button feed-throughs
- Chamber size 40 mm x 400 mm
- Body milled out of 1 piece
- µTCA.4 electronics SIS8300-L2D ADC and custom RTM
 - Also used in FLASH as standard BPM electronics

Bunch compressor chicanes

Position sweep in vertical direction delivers “raw” ADC data

Including the mechanical offsets from the buttons one obtains a very robust delivery of position data

Applied calibration and position sweep in the button array chamber
Íntra-Bunchtrain Feedback System (IBFB)

pk2pk ~ 20 μm

pk2pk ~ 6 μm
Toroid System - Charge Measurement

- Charge measurement with \(~0.2\text{pC}\) resolution RMS
- 36 Toroids along E-XFEL, based on MTCA.4 with commercial AMC (SIS8300-L2D) and custom RTM
- Timing: Signal and Timing System
- Integrated test pulser functionality
- Machine Protection:
 - **Fast Protection**: transmission of adjacent Toroids connected via fibers and local alarms cutting within current bunchtrain
 - **Slow Protection**: consecutive alarms block further bunchtrains until user acknowledgement
 - Also gives Interlocks:
 - If bunches are detected in beamline section where they are not expected
 - If bunch charge is above a given limit
 - If integrated charge of a macropulse is above a given limit (e.g. for dump protection)
- Self Trigger: First beam detection on pC level worked reliable!
Dark Current Monitor (DCM)

- Simple low Q 1.3 GHz Cavity
- Sensitive to dark current 50 nA level via pile up
- Beam current also gives a signal from fC on
- Almost insensitive to timing, Start trigger sufficient
- Powerful tool to adjust initial Laser and RF timing
- Now mainly used to track field emission from gun and accelerator modules
Screen Stations

Beam hits screen under normal incidence

![Beam diagram](image)

Large Area Photo Macro Lenses from Schneider Kreuznach

Readout and Timing: DOOCS, nearby µTCA System

Basler Aviator avA2300-25gm
2330 x 1750 pix, 5.5 µm
Monochrome, GigE

Optical Axis

f = 180mm for 1:1

OTRBW.1899.TL @ 12 GeV compressed beam

Dot Grid Target (spot Ø 0.50mm)

200µm thick LYSO Screen (ON-Axis)

1 or 2 half 200µm thick LYSO Screens (OFF-Axis)

- All Screens worked during initial beam commissioning
 - If there was beam, it was detected by the screens!
 - No COTR issues

- Lyso Material turned out to be very sensitive

- Spatial suppression of COTR worked fine.

- But beam size measurements overestimate the beam size due to “smoke rings”

- Investigation by G. Kube show, that LYSO Material gets problems at high charge densities.
 - Injector still useful data.
 - At high energy, significant overestimate of Beam Size
 - Check out different Materials, Replacement Program.

- See Talk by G. Kube (WEOC03)
E-XFEL Wire Scanner System

12 screen stations are additionally equipped with wire scanners. Wire Scanner consists of horizontal and vertical driven unit:
- 2 wires: 50 – 30 - 20µm tungsten
- Plus one 60° pair crossed 10µm wires tungsten wire

Dedicated wire scanner detectors based on XP2243B 6-stage PMT tube with fiber and paddel scintillators.

- Regular BLMs can also be used (for Halo measurements)
- In-house development of mechanics and electronics, integrated into MTCA.4 environment

Slow scan mode: already medium-heavily used for:
- Beam halo measurements
- Emittance measurements
- Matching

Fast scan mode for long bunchtrains to be commissioned.

T. Lensch „The European XFEL Wire Scanner System“, WEPC05
Sensitivity settings: based on machine activation profile

Plastic scintillators and quartz rods (cherenkov radiation)

474 BLMs along the machine, based on MTCA.4 with custom AMC (DAMC02) and RTM

Analog alarm path, independent from digital electronics and timing

Machine Protection:

- **Fast Protection:** single, multibunch and integral alarms cutting within current bunchtrain
- **Slow Protection:** consecutive alarms block further bunchtrains until user acknowledgement
- **Integrated tests:** LED and software alarm

Plastic Scintillators sensitive to few 100 keV undulator radiation

- **Undulator BLMs:** Change plastic to quartz
The RadFet Dosimetry System

- RadFet System implemented as an FMC module
- It is placed on all MPS boards and in all BPM MBUs
 - about 400 sensors in electronics racks
- In addition the FMC can read external sensors.
 - 200 external sensors in the undulator system
 - 50 external sensors in L3
- Each RadFet has a TLD nearby (cross calibration)
- Potential to release MPS alarms

Issues:
- Sensors see hard X-rays from spontaneous radiation
 - Lead hoods to shield are in preparation
- Control Software is not fully available
 - Currently, only undulator data well accessible
 - There is big potential for more essential data.
 - Work ongoing

Graph: "Collimation" in first Cells

Graph: Trip of the SASE1 quad circuit (7 Gy in Minutes)
Longitudinal Diagnostics

TDS Injector: Slice Emittance

EOD: long. bunch profile

BAM BAM EOD BAM

Bunch arrival time at BC1 with BAM and EOD

Bunch Compression Monitors: Slow Feedback on Accelerator Phases

BCM.0 BCM.1 BCM.2

TDS BC2:
Long. Phase Space

Bunch arrival time at BC1 with BAM and EOD

THz spectrometer: Bunch resolved 4 um – 300 um

E-BPM

More Info: B. Steffen: WEOA03
Summary: There is light at the End of the Tunnel

- EXFEL was successfully commissioned, and has started User Operation
 - Nevertheless, the facility is not operated at full swing.
 - Progress is now driven by Experiments Demands and Possibilities

- All necessary diagnostic systems were operating from T0 on, making the Commissioning Process was very effective.

- Two issues were dominating
 - Smoke Rings for the Screens -> Study on Materials
 - Replacement Campaign already started.
 - BLMs and Dosimeters sensitive to (very) hard X-rays
 - go to Cherenkov Radiators
 - add lead hoods to Dosimeters

- There is still some Advanced Commissioning to be done
 - Treasures to be taken,
 - Using more advanced Software, Optimizers
 - By implementing Feedbacks
Thank you for your attention
(Accelerator) Parameter Space (Status Summer 2018)

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Unit</th>
<th>Project Goal</th>
<th>Achieved</th>
<th>Routine</th>
</tr>
</thead>
<tbody>
<tr>
<td>electron energy</td>
<td>GeV</td>
<td>8 – 17.5</td>
<td>6 – 17.5</td>
<td>14</td>
</tr>
<tr>
<td>bunch repetition within pulse</td>
<td>MHz</td>
<td>Up to 4.5</td>
<td>Up to 4.5</td>
<td>1.1</td>
</tr>
<tr>
<td>bunch charge</td>
<td>pC</td>
<td>20 – 1000</td>
<td>100 – 500</td>
<td>250</td>
</tr>
<tr>
<td>electron bunch length after compression (FWHM)</td>
<td>fs</td>
<td>2 – 180</td>
<td>20 – 90</td>
<td>50</td>
</tr>
<tr>
<td>max. beam power</td>
<td>kW</td>
<td>500 kW</td>
<td>18 kW</td>
<td>1.8 kW</td>
</tr>
<tr>
<td>undulators in operation (lasing)</td>
<td></td>
<td>SASE1-3</td>
<td>SASE1-3</td>
<td>SASE1</td>
</tr>
<tr>
<td>photon pulses / s / undulator</td>
<td></td>
<td>27000</td>
<td>5000</td>
<td><1200</td>
</tr>
<tr>
<td>photon energy (SASE1)</td>
<td>keV</td>
<td>0.25 - 25</td>
<td>7-19.3</td>
<td>9.3, 14</td>
</tr>
<tr>
<td>photon pulse intensity (SASE1) @ 14 GeV, 250 pC, 9.3 keV</td>
<td>mJ</td>
<td>1.5*</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>photon pulse intensity (SASE3) @ 14 GeV, 250 pC, 600 – 900 eV</td>
<td>mJ</td>
<td>7</td>
<td><1*</td>
<td></td>
</tr>
<tr>
<td>photon pulse intensity SASE2 (@ 14 GeV, 250 pC, 7.5 keV)</td>
<td>mJ</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Restricted by safety limitations of SASE1/3 photon beamlines